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Abstract We present a new crust and upper mantle cross section of the western India-Eurasia collision
zone by combining geological, geophysical, and petrological information within a self-consistent
thermodynamic framework. We characterize the upper mantle structure down to 410 km depth from the
thermal, compositional, and seismological viewpoints along a profile crossing western Himalayan orogen
and Tibetan Plateau, Tarim Basin, Tian Shan, and Junggar Basin, ending in the Chinese Altai Range. Our results
show that the Moho deepens from the Himalayan foreland basin (~40 km depth) to the Kunlun Shan (~90 km
depth), and it shallows to less than 50 km beneath the Tarim Basin. Crustal thickness between the Tian Shan
and Altai mountains varies from ~66 km to ~62 km. The depth of the lithosphere-asthenosphere boundary
(LAB) increases from 230 km below the Himalayan foreland basin to 295 km below the Kunlun Shan. To NE
the LAB shallows to ~230 km below the Tarim Basin and increases again to ~260 km below Tian Shan and
Junggar region and to ~280 km below the Altai Range. Lateral variations of the seismic anomalies are
compatible with variations in the lithospheric mantle composition retrieved from global petrological data.
We also model a preexisting profile in the eastern India-Eurasia collision zone and discuss the along-strike
variations of the lithospheric structure. We confirm the presence of a noticeable lithospheric mantle thinning
below the Eastern Tibetan Plateau, with the LAB located at 140 km depth, and of mantle compositional
differences between the Tibetan Plateau and the northern domains of Qilian Shan, Qaidam Basin, and
North China.

1. Introduction

The present-day lithospheric structure of the Himalayan orogen, Tibetan Plateau, and surrounding regions is
the result of ~270Myr long convergence between India and Eurasia plates. The process included different
subduction and suturing episodes during the closure of the Neo-Tethys Ocean, which successively accreted
continental terrains at the southern border of Asia, and finally culminated with the continental collision
between the Indian and Eurasian plates. The collisional process resulted in large amounts of thrusting and
crustal thickening along the Himalayan orogen and broadly distributed deformation with the formation of
the high Tibetan Plateau and of additional reliefs extending some 2000 km north of Indus-Yarlung Suture,
such as the Kunlun Shan and the Tian Shan to the north and the Qilian Shan to the east [Molnar and
Tapponnier, 1975; Yin and Harrison, 2000; Tapponnier et al., 2001].

The region has been the subject of numerous ongoing researches but the nature of the deep structure and
the mechanism supporting the high Tibetan Plateau are still debated questions. The chemical composition of
the lithospheric mantle plays a fundamental role on its buoyancy/rigidity characteristics and its tectonic
behavior [Lenardic and Moresi, 1999; Griffin et al., 2009]. The long tectonic evolution of the India-Eurasia
collisional system has likely modified the chemical composition of the lithospheric mantle, causing significant
changes in the geometry of the crust-mantle and lithosphere-asthenosphere boundaries. Up to date,
however, a quantified thermal and petrophysical characterization of the lithospheric mantle in the
India-Eurasia collision zone, consistent with geothermobarometers and tomography models, has not been
attempted. Previous geophysical studies put efforts in identifying the nature and composition of the deep
unexposed crustal parts of the orogen, arguing for the presence of eclogites under Tibet [Schulte-Pelkum
et al., 2005; Hetényi et al., 2007], granulite-facies lower crust under the Himalayan orogen [Nelson et al.,
1996; Jackson et al., 2004; Groppo et al., 2007; Grujic et al., 2011; Warren et al., 2011], or under southern
Tibet [Le Pichon et al., 1999; Priestley et al., 2008]. However, though the contribution of chemical composition
and phase transitions on the density and buoyancy of the lithospheric mantle are key aspects on the resulting
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lithospheric structure [Afonso et al., 2008; Fullea et al., 2009], no such analysis has been performed in the
western Tibet-Himalaya region.

In this study, we present a new 2-D crustal and upper mantle cross section in the west India-Eurasia collision
zone, which crosses from India to Asia, the western Himalayan orogen and Tibetan Plateau, the Tarim Basin,
the Tian Shan, and Junggar Basin, ending in the southern edge of the Altai Range (Profile A-B, Figure 1). We
apply a finite-element method (LitMod-2D) [Afonso et al., 2008] that uses a self-consistent thermodynamic-
geophysical framework in which the mantle properties (density, thermal conductivity, and elastic para-
meters) are functions of temperature, pressure, and chemical composition. This approach allows defining a
geophysical model in which the chemical composition of the lithospheric mantle obtained from laboratory
and xenolith analyses is used to derive the most relevant mineral assemblages and to calculate the corre-
sponding geophysical observables. The modeled crust and lithospheric mantle structures are constrained
by available data on elevation, Bouguer anomaly, geoid height, surface heat flow, and seismic data including
seismic refraction and wide angle reflection, receiver functions, and P and S wave tomographic models. This

Figure 1. Tectonic map of the India-Eurasia collisional system and previous studies on the crustal structure (color-coded
symbols). Thick grey lines show the location of A-B and C-D profiles. The names of the different terrains are taken from
van Hinsbergen et al. [2011]. Black stars indicate mantle xenolith localities: in the western Tian Shan [Bagdassarov et al.,
2011], in the western Tarim Basin [Chen et al., 2014], and in Qaidam Basin [Song et al., 2007]. Black rhomboids represent
mafic dikes localities from Zhang and Zou [2013]. INDEPTH [Nelson et al., 1996; Zhao et al., 2011]; SF4-SF6, Sino-French
passive seismic experiments in 1998 and 1993 [Galvé et al., 2006; Vergne et al., 2002; Jiang et al., 2006]; Hi-CLIMB [Nabelek
et al., 2009; Wittlinger et al., 2009]; TIPAGE [Mechie et al., 2012]; TIBET-31 N [Y. Chen et al., 2015]; and TW-80 [Zhang et al.,
2014a]. ATF = Altyn Tagh Fault; BNS = Bangong Nujiang Suture; CAOB = Central Asia Orogenic Belt; IYS = Indus-Yarlung
Suture; JS = Jinsha Suture; KF = Karakorum Fault; KS = Kunlun Suture; MBT =Main Boundary Thrust; MCT =Main Central
Thrust; MFT =Main Frontal Thrust; NBT = North Border Thrust; NTST = Northern Tian Shan Thrust; S.-G. = Songpan-Ganzi;
and STST = Southern Tian Shan Thrust.
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technique has been successfully applied in other collisional settings, such as in the Iberian Peninsula along
three regional cross sections [Carballo et al., 2015a, 2015b; Pedreira et al., 2015] and across the Zagros
Mountains and Iranian Plateau [Tunini et al., 2015].

We also modeled the lithospheric profile by Jiménez-Munt et al. [2008] with this new technique to discuss the
along strike variations of the lithospheric structure. This profile crosses the eastern Himalayan orogen and
Tibetan Plateau, the Qaidam Basin, the Qilian Shan, and Beishan units, ending in the North China cratonic
block (Profile C-D, Figure 1). The results obtained along the two transects allows us to (i) analyze the effect
of the mantle composition on the lithospheric structure, (ii) discuss consistently the differences between
the eastern and western India-Eurasia collision zone in terms of lithospheric mantle composition and
thickness, and (iii) compare the calculated P and S velocity distributions in the upper mantle with published
seismic tomography studies.

2. Geological Background

The India-Eurasia collision zone consists of a large amalgamation of crustal and lithospheric domains,
accreted each other throughout time. The India peninsula is formed by an ancient continental crust (the
Precambrian Indian shield), which is itself a collage of cratonic blocks and mobile belts assembled between
mid-Archean and neo-Proterozoic times. The Himalayan orogen (Figure 1) corresponds to the ancient north-
ern margin of the Indian plate, strongly deformed in three major tectonic units: the Lesser Himalaya, the
Greater Himalaya, and the Tethys Himalaya. These units are separated from each other by major crustal-scale
thrusts, named, from south to north: (1) Main Frontal Thrust (MFT), carrying the Neogene molasses of the
Siwalik units over the Indo-Gangetic plain; (2) Main Boundary Thrust (MBT), carrying the Lesser Himalaya
sequence over the Neogenemolasses; (3) Main Central Thrust (MCT), separating the gneisses andmigmatites
of the Greater Himalaya from the Lesser Himalaya units; (4) the Zanskar Shear Zone (ZSZ), a low angle normal
fault separating the Greater Himalayan sequence and the overlain Tethys sedimentary sequence; and (5)
Indus-Yarlung Suture (IYS), representing the suture zone between India and Eurasia plates, including ophio-
lites, deep sea sediments deposited on the Neo-Tethys Ocean floor, and Mesozoic island-arc volcanic rocks.

North of the IYS, the Lhasa block is the southernmost continental terrain accreted along the southeastern
Eurasia margin. It consists of a ~300 km wide tectonic domain narrowing westward and is formed by sedi-
mentary sequences ranging from Ordovician to Triassic and a mid-Proterozoic to early Cambrian basement
[Yin and Harrison, 2000]. The Lhasa block collided with the Qiangtang terrain in the Jurassic [Dewey et al.,
1988], along the Bangong-Nujiang Suture (BNS). The Qiangtang terrain forms a strip of 1900 km long and
~300 km wide, delimited by the BNS to the south and by the Jinsha Suture (JS) to the north. This terrain con-
sists of Triassic to Jurassic sequences composed of metamorphosed mélange complexes, shallowmarine car-
bonates interbedded with nonmarine clastic and volcanoclastic deposits [Liu, 1988], and intruded granitoids
111–145Ma [Yin and Harrison, 2000]. North of the JS, there is a relatively heterogeneous zone, which to the
west is bounded by the Altyn Tagh Fault (ATF) and its western continuation, the Karakax Fault. These two
large faults separate the microterrains of the Eastern Tibetan Plateau and the Kunlun Shan from the rigid
Tarim block [Searle, 2010]. Approximately at 76°E longitude, the IYS zone bounds two parallel ranges, the
Ladakh and the Karakorum, which are the westward prolongations of the Lhasa and Qiangtang terrains,
respectively. The Ladakh batholith forms a 500 km long and 25 km wide belt in continuity with the
Kohistan arc, an accreted island arc between the Indian and Eurasian plates (see Figure 1 for location). The
Shyok Suture marks its northern limit, with the Karakorum thrusted on top of the Kohistan and Ladakh units.
The Ladakh is a Cretaceous-Early Tertiary batholith, composed by sheared greenschists grading to basalts
and granitoids, an andesitic unit, and plutonic rocks ranging from gabbro and diorite, to granodiorite and
leucrogranites showing calc-alkaline geochemical affinities. In this region, the Western Tibetan Plateau,
composed by the Ladakh and the Qiangtang, is less than 350 km wide, nearly the half of the Eastern
Tibetan Plateau. The Tarim Basin, covering an area of nearly 600,000 km2, is the largest cratonic domain in
western China. Its Precambrian crystalline basement is inferred to be a fragment of the Rodinia
Supercontinent [Lu et al., 2008, and references therein]. It is covered by a thick (4–12 km) [Gao and Ye,
1997, Figure 2] sedimentary sequence containing Ordovician, Permian, and Cretaceous strata. The Permian
units consist of volcano-sedimentary sequences derived from large flood basalts which affected the so-called
Tarim Large Igneous Province ~290Ma (i.e., the Tarim Basin and the western part of the Central Asian
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Orogenic Belt—CAOB—including the Tian Shan, Junggar region, and Altaids; Figure 1) [Xu et al., 2014].
Despite the Permian magmatic event, the evolution of the Tarim Basin is characterized by almost continuous
sedimentation since the Neo-Proterozoic [Xu et al., 2014], whereas the CAOB experienced subduction and
accretion-related processes through the Paleozoic, being finally amalgamated with the Tarim craton in the
Late Carboniferous [Wang et al., 2006; C. L. Zhang et al., 2012].

The central-eastern sector of the Tibetan Plateau, from the JS northward, is formed by (i) the Songpan-Ganzi
terrain, formed by a thick sequence of deep marine Triassic strata; (ii) the eastern Kunlun-Qaidam terrain and
the Qaidam Basin, bounded to the north by the southern Qilian Suture and dominated, to the south, by a
broad Early Paleozoic arc, on which a younger and narrower Late Permian to Triassic arc was superposed
[Harris et al., 1988; Jiang et al., 1992]; and (iii) the Qilian Shan, formed by complexly deformed Early
Paleozoic arcs, which developed at the southern margin of the North China craton before it was offset by
the Altyn Tagh Fault during the Cenozoic [Yin and Harrison, 2000].

3. Method

We used a 2-D numerical code (LitMod-2D) [Afonso et al., 2008], which combines geophysical and petrologi-
cal data to infer the crustal and upper mantle structure down to 410 km depth. The code calculates the 2-D
distribution of temperature, density, and mantle seismic velocities and the resulting surface heat flow, eleva-
tion, gravity, and geoid anomalies. LitMod-2D works under a forward modeling scheme; at each step, the
model outputs (elevation, gravity and geoid anomalies, surface heat flow, and mantle seismic velocities)
are compared with observed data (geophysical observables, seismic velocities, and tomography images)
and the input parameters and model geometry can be modified by the user within the experimental uncer-
tainties, in a trial and error procedure until the best fitting model is obtained. The model domain is composed
of multiple polygons, representing the different crustal and mantle bodies, to which a triangular finite
element mesh is adapted. In this study, the horizontal grid is 10 km, and the vertical varies between 500m
at shallow levels and 10 km below 250 km.

Each crustal body is associated with a single lithology, described by a set of thermophysical parameters, i.e.,
density, thermal conductivity, and radiogenic heat production. Density and thermal conductivity can be
pressure and temperature dependent, whereas radiogenic heat production can be either constant or expo-
nentially decreasing with depth. The geometry and properties of the crustal bodies are assigned according to
the geological structure and constrained by existing data.

Each mantle body is characterized by its main oxides composition (in wt %) within the NCFMAS (Na2O-CaO-
FeO-MgO-Al2O3-SiO2) system. Stable mineral assemblages in the mantle are calculated using a Gibbs free
energy minimization procedure as described by Connolly [2005]. The resulting thermodynamic tables are
generated by Perple-X [Connolly, 2005], describing densities, elastic, and thermophysical parameters of the
end-member minerals. Thus, physical properties of each mineral and of the bulk mantle bodies (density,
thermal expansion coefficient, seismic velocities, and thermal conductivity) are modeled consistently as a
function of temperature, pressure, composition, and phase changes, rather than as a function of only tem-
perature as in previous methodologies. In this work, we use an augmented-modified version of Holland
and Powell [1998] (revised in 2002) thermodynamic database [see Afonso and Zlotnik, 2011]. Density and seis-
mic velocities in the mantle are determined according to the elastic moduli and density of each end-member
mineral, as described in Afonso et al. [2008]. Anelastic effects are computed applying a pressure-temperature-
dependent correction to the output anharmonic velocities [Karato, 1993; Afonso et al., 2005]. In this study we
selected a grain size of 5mm for the mantle, in agreement with previous studies [Afonso et al., 2008; Carballo
et al., 2015a]. The lithospheric mantle composition can vary laterally depending on the geodynamic context
of a certain region, whereas the asthenosphere is considered homogeneous in composition, due to its
convective nature. Litmod assumes that the asthenospheric mantle has the primitive upper mantle (PUM)
composition of McDonough and Sun [1995]. In order to smooth the compositional change between the
lithospheric mantle and the underlying asthenosphere, we introduced a layer of 10–20 km thickness with
an intermediate composition between the asthenosphere and the overlying lithospheric mantle.

The lithosphere is considered the colder outermost layer of the Earth in which the heat transfer is dominated
by conduction [Schubert et al., 2001], and its base is defined as an isothermal boundary. Therefore, the heat
transport equation is solved for the lithosphere by finite element method under a steady state regime and
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assuming a purely conductive behavior. The boundary conditions are (i) 0°C at the model surface, although
surface temperatures in the range of 0–20°C do not affect the results significantly [see Afonso et al., 2008]; (ii)
no horizontal heat flow across the lateral boundaries of the model; and (iii) 1320°C at the lithosphere-
asthenosphere boundary (LAB). Below the lithosphere, the temperature evolves following an adiabatic
gradient. The temperature at the bottom of the model (410 km) is constant to 1520°C if the condition of
the adiabatic gradient in the sublithospheric mantle is between 0.35 and 0.50°C/km. If not, the basal
temperature will change according to this adiabatic gradient limitation. To avoid unrealistic discontinuities
in the geothermal gradient we define a thermal buffer beneath the LAB with a thickness of 40 km and a tem-
perature at its bottom of 1400°C. This buffer mimics the thermal effect of a rheologically active layer present
at the bottom of the upper thermal boundary layer in convecting mantle-like fluids [Afonso et al., 2008; Fullea
et al., 2009]. Mantle thermal conductivity is calculated as a function of composition, temperature, and
pressure following Grose and Afonso [2013]. Gravity and geoid calculations are performed by using simple
algorithms applied to the elements of the mesh, and elevation is calculated at each column of the mesh
under the assumption of local isostasy (see Zeyen et al. [2005] for further details). Flexural effects related to
regional isostasy can be noticeable at length scales <200 km [England and Molnar, 1997], though the gravity
field in Tibet indicates that the topography there is for the most part in local isostatic equilibrium [Jin et al.,
1994]. On the other hand, isostasy, local or regional, ignores the possible effects of dynamic topography asso-
ciated with sublithospheric mantle flow. Husson et al. [2014] have estimated the transient dynamic topogra-
phy produced by the subduction of the Tethys oceanic plate between India and Central Asia. These authors
conclude that the dynamic contribution to elevation changed through time producing subsidence (4–5 km
when sediment load is considered) in the Indo-Gangetic Plain from 15 to 0Ma, and uplift (~1 km) in the
Himalaya-Tibet belt from 25 to 15Ma. According to these calculations, the effects of the present-day dynamic
topography along our model profiles amount few tens of meters in the flanks of the Indo-Gangetic Plain and
across the Himalaya-Tibetan belt, and therefore, they are negligible.

In this study, improvements have been implemented to the code, in order to take into account processes like
subduction or slab detachment: (i) physical perturbations within the sublithospheric mantle, either of thermal
or compositional nature, can be now incorporated in the model and (ii) these sublithospheric perturbations
can be either coupled (i.e., considering that density anomalies are transmitted to surface elevation) or
decoupled (i.e., when density anomalies are not transmitted to surface elevation). Decoupled bodies do
not have effects on calculated topography but they do on gravity/geoid calculations. We define the sublitho-
spheric anomalies as coupled or decoupled according to the geodynamic context.

Finally, the crustal model is fixed by previous published data (e.g., geological cross sections, seismic profiles,
gravimetry, and magnetotellurics), and it is slightly modified only within the uncertainty of these data during
the modeling procedure. The resulting crust and LAB geometries adjust simultaneously topography, geoid,
gravity, thermal data, and seismic velocities following a trial and error procedure.

4. Data

The data used to constrain the models are (1) regional surface geophysical observables (elevation, surface
heat flow, and potential field data) collected from global databases; (2) results on the crustal and lithospheric
mantle structure from previous studies; (3) P wave tomography inferred from a global tomography model
obtained using the samemethod described in Bijwaard et al. [1998], but using a much larger arrival time data
set [Villaseñor et al., 2003]; and (4) lithospheric mantle compositions consistent with the lithospheric age and
with the geochemistry of mantle xenolith suites (see reference in section 4.4).

4.1. Regional Geophysical Data

Elevation data (Figure 2a) come from 1min arc resolution ETOPO1 global elevation model [Amante and
Eakins, 2009]. The topography of the region is highly variable and characterized by steep gradients separating
the topographic domains. Themajor flat areas, Tibetan Plateau, Tarim, and Junggar basins, are surrounded by
six different mountain ranges: the Himalaya and Karakorum ranges, with an average elevation of
4000–5000m and several peaks over the 8000m; the Tian Shan (~4000m) and the Qilian Shan (~4500m),
located to the north and to the east of the Tarim Basin, respectively; the Kunlun Shan (~4000m), located at
the southern border near the Pamir region; and the Altai Range (2500–3000m) extending to the northern
and eastern border of the Junggar Basin.
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The Bouguer anomaly (Figure 2b) has been computed applying the complete Bouguer correction to 1min
grid of satellite free-air data [Sandwell and Smith, 1997] using the FA2BOUG software [Fullea et al., 2008]
and a reduction density of 2670 kg/m3. A strongest negative Bouguer anomaly of �500mGal characterizes
the entire Tibetan Plateau and the Himalaya-Karakorum ranges, gently smoothing toward the syntaxes, the
Pamir and Beishan regions. The Tian Shan and Altai Range are characterized by values of ~�300mGal,
whereas the Tarim and Junggar basins show values between �100 and �200mGal. Positive anomalies are
only observed in the Indo-Gangetic plain (~50 mGal).

Geoid height data (Figure 2c) derive from the Earth Geopotential Model EGM2008 [Pavlis et al., 2008], with
1 × 1min grid gravity anomaly data including spherical harmonic coefficients up to degree and order 2190.
According to Bowin [2000], wavelengths larger than 4000 km were removed subtracting spherical harmonics
up to degree and order 9 to obtain a residual geoid anomaly that reflects the density distribution of the first
~400 km of depth. The highest geoid height is observed along the Himalayan orogen (~30m), gradually
decreasing toward the Beishan and toward the Karakorum. Minimum values are in the central Junggar
Basin (~�22m) and in the Tarim Basin (values between~�10m in the northeastern sector and~�2m in
the southwest).

Figure 2. Geophysical observables in the study region. (a) Topography; (b) Bouguer anomaly calculated from global free-air anomaly [Sandwell and Smith, 1997]
with 3-D topographic correction; (c) geoid height from EGM2008 model filtered to degree and order 9; and (d) heat flow measurements from global data set
[Pollack et al., 1993].
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Surface heat flow data (Figure 2d) are taken from the global compilation by Pollack et al. [1993]. In general,
details on the quality data are not available from referred works. According to the International Heat Flow
Commission, the good, average, and poor accuracy levels are, respectively, of ±5, 10, and 20%. Heat flow
values in the Tarim and Qaidam basins, Qilian Shan, and Tian Shan are between 40mW/m2 and
70mW/m2, increasing westward toward the Pamir where values of 100–120mW/m2 are measured. In the
Tibetan Plateau heat flow data are very scarce and show a high scatter, probably related to active ground-
water flow and/or crustal melting as evidenced by the presence of numerous geysers, hot springs, volcanic,
and anhydrous xenoliths [Nelson et al., 1996; Hacker et al., 2000; Jiménez-Munt et al., 2008]. The few available
data indicate high heat flow in eastern Lhasa terrain, with values between 180mW/m2 and 194mW/m2. Few
and sparse additional data show values of ~60mW/m2 in the western Himalayan orogen [An and Shi, 2007],
55–60mW/m2 in the Western Tibetan Plateau [An and Shi, 2007], 44–55mW/m2 in the Tarim Basin [Wang,
2001; An and Shi, 2007], 50–58mW/m2 in the Tian Shan [Wang, 2001; An and Shi, 2007], ~52mW/m2 in the
Junggar Basin [Wang, 2001], and ~46mW/m2 in the Altai Range [Wang, 2001]. These data are not included in
Figure 2d because they correspond to average regional values, though we include them for comparison with
the obtained results (see section 5).

4.2. Previous Studies on the Crustal and Lithospheric Mantle Structure

During the last three decades a large amount of geologic and geophysical investigations has been carried out
in the Himalayan-Tibetan region mainly to image the crustal structure: the broadband seismic experiments
PASSCAL [e.g., Owens and Zandt, 1997; McNamara et al., 1997] and TW-80 [Zhang et al., 2014a], the interna-
tional and multidisciplinary experiments INDEPTH [e.g., Nelson et al., 1996; Zhao et al., 2011], Hi-CLIMB [e.g.,
Nabelek et al., 2009;Wittlinger et al., 2009] and Xayar-Burjing Geoscience transect [Zhao et al., 2003], the series
of Sino-French seismic studies [e.g., Galvé et al., 2006; Jiang et al., 2006], the TIPAGE wide-angle seismic
project [Mechie et al., 2012], the TIBET-31N seismic array [Y. Chen et al., 2015], magneto-telluric [e.g., Zeng
et al., 2015], gravimetry [e.g., Braitenberg et al., 2000, 2003; Steffen et al., 2011; He et al., 2014], receiver func-
tions [e.g.,Wittlinger et al., 2004;Mitra et al., 2005; Hetényi et al., 2007; Rai et al., 2006; Chen et al., 2010; Shi et al.,
2015], joint inversion of elevation, geoid with thermal analysis [Robert et al., 2016], and combining teleseismic
and gravity [Basuyau et al., 2013].

Li et al. [2006] summarize the results of about 90 seismic refraction/wide-angle reflection profiles in a crustal
thickness map of the mainland China. The map shows values of 70–74 km in the southern Tibetan Plateau,
60–68 km in the Himalayan and Qiangtang regions, gradually decreasing to 48 km toward the northeast
(Qaidam Basin, Qilian Shan, and Beishan Basin). Minimum values of crustal thickness are found in the
Tarim (~44 km in its middle central zone) and Junggar (42–44 km) basins, whereas the Tian Shan is modeled
with a 52–54 km thick crust. Seismic studies show that after a progressive deepening of the Moho from
~40 km beneath the Himalayan foreland basin to ~90 km beneath the western Qiangtang and Kunlun
Shan [Rai et al., 2006], a remarkable Moho step [~20 km, Wittlinger et al., 2004; ~30 km, Rai et al., 2006;
Zhao et al., 2010] indicates the transition to the Tarim Basin, characterized by 50–60 km thick crust [Kao
et al., 2001; Wittlinger et al., 2004; Rai et al., 2006]. These values are also consistent with those obtained by
inverting the most recent gravity data (from GRACE and GOCE satellite missions), which show a crustal thick-
ness sharply decreasing from~70 km in theWestern Tibetan Plateau to 35–47 km in the Tarim Basin [Shin et al.,
2007; Tenze et al., 2014]. Farther north, Zhao et al. [2003] carried out an extensive studywithwide-angle seismic
reflection/refraction surveys, magneto-telluric sounding, and 2-D density structure analysis across the Tian
Shan and Altai Range. The results reveal the complexity of the crust-mantle transition zone beneath the Tian
Shan, characterized by an interdigitated structure involving the upper, middle, and lower crust layers. The
crust-mantle boundary is located at depths of about 64 km beneath the Tian Shan, 55 km in the Junggar
Basin, and 60 km in the southern Altai Range. Another seismic experiment imaged the Moho discontinuity
across the Tian Shan, from the northern Tarim Basin to the Junggar Basin [Li et al., 2007]. The profile shows
an averaged crustal thickness of 48 km in the Tarim Basin, 55–60 km in the Tian Shan, and 50 km in the south-
ern Junggar Basin. The estimated resolution in Moho depth depends on the seismic acquisition technique
being of about ±5 km for receiver functions and±3 km for seismic refraction andwide-angle seismic reflection.

The lithospheric mantle structure is harder to constrain, due to the lack of direct observables and to its strong
dependence on the lithosphere definition (seismic/thermal/elastic lithosphere) [e.g., Eaton et al., 2009;
Artemieva, 2011]. A source of information about the upper mantle structure comes from seismic tomography
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studies, which denotes east-west variations of the velocity anomalies across the Tibetan Plateau [Van der Voo
et al., 1999; Zhou and Murphy, 2005; Huang and Zhao, 2006; Li et al., 2008; H. Zhang et al., 2012; Replumaz et al.,
2014; Mohanty et al., 2016]. The tomography profiles show a fast velocity feature, interpreted as the Indian
lithosphere underthrusting south Tibet, and a low velocity zone in NE Tibet [e.g., Zhao et al., 2010].

Receiver function profiles image the lithosphere-asthenosphere boundary below the Western Tibetan
Plateau at 180–220 km depth, deepening westward toward the Karakorum and Pamir regions [Zhao et al.,
2010]. A jump in the LAB depth of ~50 km marks the transition from the deeper Indian LAB to the shallower
Eurasian LAB [Zhao et al., 2010]. Consistently to these results, P and Swave tomography studies show that the
LAB below the Tarim Basin is relatively shallower with respect to the Indian one and located at 150–200 km
depth [Xu et al., 2002; An and Shi, 2006; Priestley and McKenzie, 2006; Lei and Zhao, 2007]. Northward, the Tian
Shan belt is characterized by an even thinner lithosphere [120–170 km, Xu et al., 2002; 90–120 km, Kumar
et al., 2005], with higher temperatures (~1390°C at 150 km depth) [An and Shi, 2006] and low velocities
penetrating in the lower crust, which have been related to the upwelling of hot mantle anomalies [Xu
et al., 2002, and references therein; Lei and Zhao, 2007].

4.3. P Wave Tomography Profile of the Western India-Eurasia Collision Zone

We present a vertical cross section (Figure 3a) of a P wave global tomographic model obtained using the
same method described in Bijwaard et al. [1998] but using a much larger arrival time data set [Villaseñor
et al., 2003]. This data set incorporates additional earthquakes from 1995 to 2002 listed in the International
Seismological Centre’s bulletins and arrival times recorded at regional distances that were not used
previously. In total, more than 14 million arrival times from 300,000 earthquakes, nearly 4 times the amount
used by Bijwaard et al. [1998], were reprocessed using the EHB methodology [Engdahl et al., 1998]. The ray
paths corresponding to these new arrival times sample mainly the uppermost mantle and it is in this region
where the resolving power of the new data set is increased, allowing to image seismic velocity anomalies of
the same resolution of the grid used for the tomographic inversion (0.5° × 0.5° in area and 25–50 km in depth).
Figure 3b shows a synthetic reconstruction test with anomalies of 2° × 2° with alternating positive and
negative values separated by a 2° buffer with 0% anomaly. For the two upper mantle depth slices shown,
the reconstruction is good throughout the study region.

The tomography image shows a strong positive anomaly (up to 4%) beneath the Himalayan orogen and the
Himalayan foreland basin, vanishing to about 300 km depth. P wave anomalies show progressive lower
amplitudes northeastward, i.e., up to 2% below the Tarim Basin, and ≤ 1% in the Tian Shan, Junggar, and
Altai regions. The transition between positive and negative anomaly is located at ~220 km depth beneath
the Tarim Basin and ~320 km depth beneath the Tian Shan. In the first 400 km depth of the profile, only
one negative anomaly is imaged (≤ �1%, between 300 and 400 km depth), beneath the Tarim Basin.
Finally, it is worthy to notice a clear decrease in the amplitude of the positive anomaly below the Tarim
Basin with respect to the Western Tibetan Plateau and beneath the Junggar Basin, relative to the Tarim or
Altai regions. These velocity drops can be the result of either local lithospheric thickness variations (locally
thinner lithosphere) or of compositional changes, or more likely a combination of both.

4.4. Lithospheric Mantle Composition

Mineral assemblages in the lithospheric mantle have been computed using the NCFMAS-major-oxides
approach. On the whole, the bulk composition of the lithospheric mantle is peridotitic. Tectonothermal
processes related to progressive basaltic melt extraction can change considerably this average composition
from one place to another, consequently affecting the physical properties of the lithospheric mantle. Thus,
lithospheric domains with different tectonothermal histories are expected to have different physical proper-
ties and chemical compositions. The composition of the lithospheric mantle is broadly dependent upon the
age of the overlying crust, being the Archean and Proterozoic cratons the most depleted lithospheric mantle
portions [Griffin et al., 1998, 1999; Hawkesworth et al., 1999; Gaul et al., 2000; Zheng et al., 2001; O’Reilly et al.,
2001]. Global data from mantle-derived xenoliths and garnet xenocrystals in volcanic rocks and exposed
orogenic peridotite massifs document a secular compositional evolution of the lithospheric mantle, revealing
a depletion in Fe, Ca, and Al contents from Archean to Phanerozoic times [Griffin et al., 2003, 2009;O’Reilly and
Griffin, 2006; Poudjom-Djomani et al., 2001]. The chemical composition of the lithospheric mantle, especially
in terms of Fe and Al contents, has important consequences for geophysical properties. Low content of Fe
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results in lower densities and higher seismic velocities [Artemieva, 2006; Poudjom-Djomani et al., 2001], mean-
while high content of Al results in high seismic velocities.

Three mantle xenoliths and two magmatic dikes localities have been analyzed in the study area (Figure 1). In
the Tian Shan, geochemical data are available from the xenolith analyses by Bagdassarov et al. [2011]. In the
Tarim Basin, mantle xenolith suites [Chen et al., 2014] suggest that the lithospheric mantle is formed by, at
least partly, juvenile mantle material related to the Early Permian mantle plume event, which caused flood
basalt magmatism covering nearly all the Permian strata in the Tarim Basin. Zhang and Zou [2013], by analyz-
ing chemical compositions of two magmatic dikes localities, argue for two distinct mantle domains in the
Tarim Large Igneous Province: a long-term enriched continental lithospheric mantle of the Tarim domain
in the south and a more depleted lithospheric mantle of the Central Asian Orogenic Belt (CAOB) region in
the north (i.e., Tian Shan, Junggar and Altai), due to slab-derived fluids or subducted sediments. The existence
of different lithospheric domains suggests different mantle compositions. In the Eastern Tibet, Song et al.
[2007] analyze the mantle xenolith suites from North China Craton and Qaidam-Qilian Block. Their data
suggest that the garnet peridotite massif from this zone is not a simple mantle fragment but a lithological
association related to subduction zone magmatic processes before dragged down to deep mantle by the
subducting oceanic/continental lithosphere. Ding et al. [2007] analyze mafic and ultramafic xenoliths from

Figure 3. (a) Pwave seismic tomography image along A-B profile (see location in Figure 1). White circles represent the earthquakes used in the tomography [Engdahl
et al., 1998]. Contour lines interval: 1%. Global reference model used—AK135 [Kennett et al., 1995]. MCT =Main Central Thrust; MFT =Main Frontal Thrust;
NTST = Northern Tian Shan Thrust; and STST = Southern Tian Shan Thrust. (b) Results of spike reconstruction tests of the Pwave tomographic model of Villaseñor et al.
[2003] for two upper mantle depths: 35–70 km (left) and 230–290 km (right). The synthetic model consists of spike anomalies of 2 × 2° with alternating positive
and negative anomalies of ±5% separated by a 2° buffer with 0% anomaly.
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central Qiangtang, but their petrological characteristics suggest that they were entrained from the lower
crust or the crust-mantle transition boundary. Other crustal xenolith data from central Tibet have been
published though they do not provide information on the mantle composition [Hacker et al., 2000; Jolivet
et al., 2003; Chan et al., 2009].

We tried to fit our results with the compositions derived frommantle xenolith data and found that these com-
positions are not suitable to explain all the geophysical observables (elevation, gravity, geoid, and seismic
velocity anomalies). As explained in section 5 and in the supporting information, fitting the geophysical data
along the A-B profile requires more fertile mantle compositions to allow increasing the mantle density and
lowering the P wave mantle velocities. In consequence we referred to the age-classified lithospheric compo-
sitions by Griffin et al. [2003, 2009] and O’Reilly and Griffin [2006] and those compiled in global petrological
databases (PetDB database, http://www.earthchem.org/petdb) to choose the optimal upper mantle oxides
from real samples.

The selected lithospheric mantle compositions are detailed in Table 1. In agreement with the age of the last
tectonothermal event [Artemieva, 2006], we consider a neo-Proterozoic lithospheric mantle for the Indian
northern boundary (Mantle 1) [Griffin et al., 2009]. The other lithospheric mantle compositions have been cho-
sen to consistently fit all the observables with the geodynamic context (see also the supporting information).
In order to analyze their effect on seismic velocities, we plot the depth variations of P wave velocity and den-
sity for the five lithospheric mantle compositions considered in this study, taking into account a thickness of
60 km and 200 km for the crust and lithosphere, respectively (Figure 4). These values correspond to the
average structure of the India-Eurasia collision zone. Mantle 2 corresponds to the PUM from McDonough
and Sun [1995]; Mantle 3 and Mantle 5 correspond to two lherzolites from El Messbahi et al. [2015]; and
Mantle 4 corresponds to a lherzolite by Cao and Zhu [1987]. Fixing themantle composition, the density within
the lithospheric mantle depends on both temperature and pressure and, hence, on the lithospheric structure.
The densest composition corresponds to Mantle 5 which is ~8 kg/m3 denser than PUM (or Mantle 2). Mantle 5
is the only mantle composition which shows a decrease of the density of ~8 kg/m3 at LAB depth. It is
markedly denser than the other compositions, but it shows intermediate P wave seismic velocities. Mantle
1 composition, on the other hand, is the least dense mantle, but it is only ~0.01 km/s slower than Mantle 2.
Mantle 2 is the fastest composition, up to ~0.08 km/s faster than Mantle 4, ~0.06 km/s faster than Mantle 5,
and ~0.03 km/s faster than Mantle 3.

5. Results

The forward modeling scheme requires an initial model including the geometries of the crustal and litho-
spheric mantle bodies and their physical parameters. As a general procedure, we kept the initial crustal model
(geometry and physical parameters) and we only modified it when strictly necessary to fit the surface obser-
vables, after trying different compositions and geometries for mantle bodies. Crustal modifications are always
within the uncertainties associated with experimental data (principally from seismic data and geologic cross

Table 1. Major Elements Composition in the NCFMAS System for the Lithospheric Mantle and Asthenosphere Domains
Used in the Modelinga

Mantle Compositions in the NCFMAS System (%)

Mantle 1 Lherz.
Average

[Griffin et al., 2009]

Mantle 2—PUM Primitive
Upper Mantle [McDonough

and Sun, 1995]

Mantle 3 Lherz.
[El Messbahi
et al., 2015]

Mantle 4 Lherz.
[Cao and Zhu,

1987]

Mantle 5 Lherz.
[El Messbahi
et al., 2015]

SiO2 45.4 45 44.22 45.96 45.23
Al2O3 3.7 4.5 3.31 3.09 3.77
FeO 8.3 8.1 9.35 9.22 9.3
MgO 39.9 37.8 39.07 36.99 36.46
CaO 3.2 3.6 2.93 3.68 4.43
Na2O 0.26 0.25 0.15 0.27 0.26
Total 100.76 99.25 99.03 99.21 99.45
Mg# 90.6 89.3 88.16 87.73 87.48

aLherz. = Lherzolite.
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sections). Note that the lines separating different mantle bodies are to be considered transition zones in
which the mantle composition, i.e., the relative amount of the mantle minerals, varies gradually from one
mantle body to the other, according to the pressure-temperature conditions.

The crust and lithospheric mantle structure of the best fit model are described in the following section. A
selection of intermediate models is explained in the supporting information to illustrate the modeling pro-
cedure. In the supporting information we show results from Model 0, characterized by a 1-D mantle part
(i.e., flat-LAB geometry and homogeneous lithospheric mantle composition), and a succession of progres-
sively more complex models (Models 1 to 4). Model 1 shows the effect of introducing lithospheric mantle
thickness variations on the geophysical observables. Models 2 to 4 show the effect of considering lateral
variations in the lithospheric mantle composition. It is worth to notice that each intermediate model
presented in the supporting information is the best fit of the trial-and-error procedure after some tens
of runs each.

5.1. Crustal Structure

We build the crustal model using the information available from published data on the Himalayan-Tibetan
region. The resulting crustal structure is shown in Figure 5, and the physical properties used for each crustal
body are detailed in Table 2. Density and thermal conductivity values for crustal bodies have been derived
from previous studies [e.g., Wang, 2001; Zhao et al., 2003; Jiménez-Munt et al., 2008; Bai et al., 2013; Zhang
et al., 2014b]. Radiogenic heat production has been taken from a global compilation carried out by Vilà
et al. [2010]. The average crustal density along our profile varies between 2825 kg/m3 and 2870 kg/m3.
Higher values (up to 2920 kg/m3) are modeled in the northern Qiangtang and Kunlun Shan due to the thick
crust and the consequent high pressures in the lower crust. Our resulting crustal densities of the Himalayan
foreland basin and Tibetan Plateau are consistent with the 3-D gravity modeling by Bai et al. [2013] and
Zhang et al. [2014b]. They found average crustal densities of ~2800 kg/m3 in the Himalayan foreland basin,
increasing northward to ~2930 kg/m3 in South Tibetan Plateau, where they modeled the thickest crust.
Our average crustal density is 2830 kg/m3 in the Tarim Basin, increasing northward to 2875 kg/m3 in the
CAOB region. This northward increase is also modeled by Zhao et al. [2003] from ~2730 to 2850 kg/m3 from
the Tarim Basin to the Altai Range.

Figure 4. Density and P wave velocity variations on depth for each mantle composition, considering a flat model with
parallel layers, where Moho depth is 60 km and LAB depth 200 km. Mantle compositions are detailed in Table 1.
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The tectonic structure is based on the tectonic map by Yin and Harrison [2000] and on published geological
cross sections [Guillot et al., 2003; Wang et al., 2003; Zhao et al., 2003; Wittlinger et al., 2004; Searle, 2010;
Charvet et al., 2011]. The depth of the Moho discontinuity is constrained by several receiver function profiles
[Kao et al., 2001; Zhao et al., 2003; Rai et al., 2006; Li et al., 2007] (and plotted on Figure 5) and by a wide-angle
seismic profile to the north (CAOB region). The considered Moho geometry is also consistent with a number

Table 2. Physical Properties of the Different Tectonic Units Used in the Crustal Model Along A-B Profilea

# Tectonic Units H (μW/m3) K (W/K · m) ρ (kg/m3) References for ρ

1 Himalayan foreland basin 1.5 exp(�z/15) 2.3 2450–2487 Jiménez-Munt et al. [2008] and Bai et al. [2013]
2 India UC Lesser Himalaya 2.2 exp(�z/15) 2.5 2635–2725 Jiménez-Munt et al. [2008] and Bai et al. [2013]
3 Greater Himalaya 2 exp(�z/15) 2.5 2645–3240 Jiménez-Munt et al. [2008] and Bai et al. [2013]
4 Tethys Himalaya 1.2 exp(�z/15) 2.3 2650 Jiménez-Munt et al. [2008] and Bai et al. [2013]
5 Ladakh batholith 2 exp(�z/15) 2.3 2720–2800
6 Qiangtang 2 exp(�z/15) 2.4 2610–3050 Jiménez-Munt et al. [2008]
7 Granitoid 2 2.5 2780 Zhao et al. [2003]
8 Tarim Basin sediments 1.2 exp(�z/15) 2.2 2590–2780
9 Junggar Basin sediments 1.2 exp(�z/15) 2 2600–2690 Zhao et al. [2003]
10 Kunlun Shan 2.2 exp(�z/15) 2.5 2620–3000
11 Tarim Basin UC 2 exp(�z/15) 2.5 2720–2790
12 Tian Shan UC 2 exp(�z/15) 2.3 2650–2725 Zhao et al. [2003]
13 Junggar (Basin and Accretionary Belt) UC 2 exp(�z/15) 2.5 2720–2800 Zhao et al. [2003]
14 Altai Range UC 2 exp(�z/15) 2.2 2720–2790 Zhao et al. [2003]
15 India MC 0.3 2.3 2910–2990 Bai et al. [2013]
16 Tarim Basin MC 0.3 2.3 2800–2850
17 Tian Shan MC 0.3 2.3 2850–2940 Zhao et al. [2003]
18 Altai Range and Junggar (Basin and Accretionary Belt) MC 0.3 2.3 2850–2950 Zhao et al. [2003]
19 India LC 2.1 0.2 3000–3180 Bai et al. [2013]
20 Tarim Basin LC 2.1 0.2 2990–3010
21 Tian Shan LC 2.1 0.2 2950–3000 Zhao et al. [2003]
22 Junggar (Basin and Accretionary Belt) LC 2.1 0.2 3000 Zhao et al. [2003]
23 Altai Range LC 2.1 0.2 3000 Zhao et al. [2003]

aDepth-varying radiogenic heat production H (z is the depth in km); thermal conductivity K; and density ρ (the range is due to its depth dependence). UC: upper
crust; MC: middle crust; and LC: lower crust.

Figure 5. Crustal model of A-B profile. Physical properties of crustal bodies are reported in Table 2. IYS = Indus-Yarlung Suture; JS = Jinsha Suture; KF = Karakorum
Fault; MCT =Main Central Thrust; MFT =Main Frontal Thrust; NTST = Northern Tian Shan Thrust; NTSF = Northern Tian Shan Fault; STST = Southern Tian Shan
Thrust; and ZSZ = Zanskar Shear Zone.
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of studies carried out in the Tarim Basin and Tian Shan, which depending on the methodology used (seismic
tomography, receiver functions, surface wave dispersion, petrology, and gravity data) propose Moho depth
values of 50–70 km below the Tian Shan and 40–50 km below the Tarim Basin [Belousov et al., 1992; Kosarev
et al., 1993; Vinnik et al., 2004; Shin et al., 2007; Bagdassarov et al., 2011; Steffen et al., 2011, and references
therein]. In our model the Moho depth below the Tian Shan is ~60 km and varies between 47 km and
57 km below the Tarim Basin. In the southern sector of the profile, the modeled Moho discontinuity is
progressively deepening from the Indian plain northward, reaching the maximum depth (90 km) along the
A-B profile below the Kunlun Shan. Our model shows a variable crustal thickness from the MCT to the JS,
between 60 and 80 km, which is consistent with the ~70 km thick crust calculated in the Western Tibetan
Plateau using the gravity data from the GOCE satellite mission [Tenze et al., 2014]. The Himalayan orogen
(Lesser Himalayan Sequence and Greater Himalayan Sequence) and the Western Tibetan Plateau overthrust
the lower Indian crust until the Jinsha Suture (~600 km) (Figure 5). Both of them lay on top of the Indian
middle-lower crust and are separated from the Tarim Basin by the north verging Kunlun Shan. The Tarim
Basin is mostly characterized by gently deformed strata, underthrusted below the southern Tian Shan. The
thickness of the sedimentary cover in the Tarim Basin is not completely homogeneous, thrusted over the
two borders by the Tian Shan in the north and the Kunlun Shan in the southwest, respectively [Mascle
et al., 2012]. Farther north, the Junggar Basin is characterized by a similar tectonic structure, with the crustal
layers dipping to the south beneath the northern Tian Shan.

5.2. Upper Mantle Structure

Figure 6 shows the best fit model obtained by considering lateral variations of the lithospheric mantle thick-
ness and composition. According to tomography, we have also considered a thermal anomaly (ΔT= 60°C) in
the sublithospheric domain beneath the Tarim Basin. This sublithospheric thermal anomaly is assumed
coupled to the lithosphere in calculating the elevation due to its large wavelength (>800 km), which facili-
tates the transmission of vertical stresses (for more details see section 3 and Carballo et al. [2015b]).
However, this is a matter of debate since coupling/decoupling depends on the viscosity profiles of themantle
and, especially, of the crust, but the methodology we used does not consider rheological parameters. Four
different mantle bodies with different compositions are used to satisfy all the geophysical data considered
in our approach, although they do not aim to represent the “true” mantle composition along the selected
profile (see Table 1 and supporting information for details). A complete analysis of chemical compositions
and resulting physical properties has been performed by Afonso et al. [2013a, 2013b] showing that more than
one composition can result in the same densities and velocities at given P-T conditions. Therefore, the
lithospheric mantle compositions cannot be resolved univocally from our modeling. We can only show man-
tle compositions compatible with geophysical observations and petrological data, providing information on
enrichment/depletion in major elements playing a key role on the density and seismic velocity distributions
within the lithospheric mantle.

The calculated surface heat flow, ranging between 40 and 60mW/m2, is not so well constrained owing to its
scarcity and associated uncertainty, particularly in the south of the profile (Figure 6). However, the results are
consistent with the heat flow values from Wang [2001] and An and Shi [2007] illustrated in section 4.1. The
resulting elevation, gravity, and geoid anomalies match the major observed trends along the profile. Local
misfits in the Bouguer anomaly (15–20mGal) are noticed at the southern edge of the Tarim Basin, probably
related to local crustal features not considered in our model. The two frontal regions of the Tian Shan also
show misfits in the elevation (400–600m), though noticeably lesser than in previous models (see supporting
information). These discrepancies can be explained by flexural effects related to regional isostasy as these
regions are characterized by elastic thicknesses larger than 40 km [Braitenberg et al., 2003; B. Chen et al.,
2015]. Liu et al. [2004] also point out that flexural deformation characterizes the northern margin of the
Tarim Basin, since the rigidity of the basin transfers the strain originating from the far-field India-Eurasia
collisional stresses toward the north, releasing it into flexure under the sedimentation and tectonic loading
associated with uplift in the Tian Shan.

From south to north, the resulting LAB depth varies from 220 km below the Himalayan foreland basin to
295 km below the Kunlun Shan, decreasing to ~240 km below the Tarim Basin and to ~260 km below the
Tian Shan (Figure 6e). Farther north, the base of the lithosphere progressively deepens from ~260 km depth
below the Junggar region to ~280 km underneath the Altai Range.

Tectonics 10.1002/2016TC004161

TUNINI ET AL. LITHOSPHERE OF INDIA-EURASIA COLLISION 13



Figure 6. A-B profile, best fit model. (a) Surface heat flow; orange and green horizontal bars in the heat-flow panel are mean heat flow values fromWang [2001] and
An and Shi [2007], respectively. (b) Bouguer gravity anomaly. (c) Geoid height. (d) Topography. Blue lines represent the calculated values from the model. Red dots
denote measured data, and vertical bars denote the standard deviation calculated on a strip of 50 km width (500 km for surface heat flow). (e) Temperature
distribution, numbers 1–4 and PUM indicate the chemical composition (Table 1). Thick horizontal bars in the temperature panel are temperatures from different
studies ([A] An and Shi, 2007; [B] Liu et al., 2004; [C] Bagdassarov et al., 2011). (f) P waves velocity anomalies, relative to the column located at 1910 km distance along
the profile (see details on the text). (g) P wave seismic tomography model (described in section 4.3). MCT =Main Central Thrust; MFT =Main Frontal Thrust;
NTST = Northern Tian Shan Thrust; and STST = Southern Tian Shan Thrust.
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The temperature distribution along the profile (Figure 6e) shows upward deflections of the isotherms accord-
ing to the increase of crustal thickness and the consequent higher radiogenic heat production, especially
accentuated beneath the Western Tibetan Plateau, Tian Shan, and the Junggar Accretionary Belt. The
Moho temperature is ~650°C in the Himalayan foreland basin and Tarim Basin, 800°C in the Junggar Basin,
and ~900°C in the Himalayan-Tibetan Plateau region, Tian Shan, Junggar Accretionary Belt, and Altai
Range. The maximum temperature at Moho discontinuity is just over 900°C below the Kunlun Shan. The
Moho temperatures in Tarim and Tian Shan regions are in agreement with values obtained by field-based
geothermal analysis and thermal-petrology studies [Liu et al., 2004; Bagdassarov et al., 2011]. Lower crust
temperatures exceeding 800°C in Tibet are consistent with the presence of granulite/eclogite facies meta-
morphism [Groppo et al., 2007; Grujic et al., 2011; Warren et al., 2011]. Our modeled mantle temperatures
match the temperatures estimated from seismic tomography in the western Himalayan-Tibetan region and
central Tarim [An and Shi, 2007] and disagree in south Tarim Basin and Tian Shan, where these authors pre-
dicted higher values (~1390°C at 150 km depth). An and Shi [2006] published a seismic-thermal lithosphere
map where the LAB is located at 140–170 km depth beneath the Tarim Basin and Tian Shan. These depths
are considerably shallower than those predicted in our model (230–250 km) and the 250 km in the Tarim
Basin proposed by Wang [2001].

The lithospheric mantle density (Figure 7a) increases from the Moho to the bottom of the lithosphere from
3350 kg/m3 to 3500 kg/m3, with the maximum values at the LAB depth below the Kunlun Shan. At the same
temperature-pressure conditions, lateral variations up to ~50 kg/m3 can be noticed due to compositional
changes (different mantle bodies). Below the LAB, the sublithospheric mantle density increases continuously
until values of 3600 kg/m3, due to the predominant effect of pressure. The sublithospheric thermal anomaly
of 60°C beneath the Tarim Basin results in a mantle density decrease of ~10 kg/m3.

Seismic velocities within the lithospheric mantle range from 7.9 km/s to 8.50 km/s and from 4.5 km/s to
4.65 km/s for P and S waves, respectively (Figures 7b and 7c). In both cases, maximum values characterize
the deepest lithospheric mantle below the Kunlun Shan, near the base of the lithosphere, while minimum
Vp and Vs values are found at Moho depths below the Junggar Basin and the Tian Shan, respectively. In

Figure 7. Calculated mantle density and P wave and S wave seismic velocities along A-B profile, in the best fit model.
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the sublithospheric domain, P and S wave seismic velocities increase progressively with depth to values of
~8.75 km/s and ~4.7 km/s at 400 km depth, respectively. Beneath the Tarim Basin these values are slightly
lower (~1%) due to the considered sublithospheric thermal anomaly.

The velocity anomalies are calculated assuming a 1-D reference velocity model. Global seismic tomography
commonly uses the AK135 reference model [Kennett et al., 1995], which represents a global average of seis-
mic velocities corresponding to a simple stratified Earth with 35 km thick crust and 120 km thick lithospheric
mantle. The thick crust of the India-Eurasia collisional system (up to 90 km thick in the Western Tibetan
Plateau) [Rai et al., 2006; Zhao et al., 2010] makes the AK135 unsuitable for a realistic analysis of the upper
mantle anomalies in the region, especially at lithosphere levels. Therefore, we opted for calculating the man-
tle seismic velocity anomalies relative to a reference column selected along the modeled profile. The column
that shows nearly null anomaly in the tomography image (Figures 3a and 6g) will be our reference column. In
this way, our modeled seismic anomalies and the tomographic ones will have the same zero level, and this
will permit to compare the lateral variations of the P wave anomaly along the profile between our model
and the seismic tomography. Our reference column is selected just north to the Northern Tian Shan Thrust
(NTST) at 1910 km distance from the beginning of the profile (Figure 6f).

The localization of the largest modeled positive anomalies (≥1%) below the Himalayan foreland basin,
Himalaya-Tibet Plateau, and Tarim Basin (Figure 6f) is consistent with the seismic tomography image
(Figure 6g). The compositional changes below the Junggar and Altai regions allow explaining the reduced
amplitude of the seismic velocity anomaly in the northern half profile with respect to the southern part.
Beneath the Tarim Basin, the positive Vp anomaly goes down to ~200 km and a low velocity zone in the
sublithospheric domain below 300 km depth, results from the predefined thermal anomaly.

6. Discussion
6.1. India-Eurasia Collision Along the Western Profile

We calculated the root-mean-square error (RMSE) and the deviations along the profile for the gravity anom-
aly, geoid, and elevation, and we compare the obtained values between the different presented models
including the best fit model and Models 0 to 4 (Figures 6, A1 to A5 in the supporting information, and
Figure 8). With respect to the initial model Model 0, the best fit model allows reducing the RMSE errors by
22%, 36%, and 21% for the gravity anomaly, geoid height, and elevation, respectively (Figure 8a). This means
that the deviations have been reduced by 20–40mGal for the gravity, 2–6m for the geoid height and
200–500m for the topography, depending on the position along the profile (Figure 8b). The P wave seismic
tomography is not included in the RMSE calculations; however, from Figures 6 and A1 to A5 we can conclude
that our best fit model displays the best adjustment.

The southern sector of the western profile shows a lithospheric thickness similar to the results obtained by
Zhao et al. [2010] using receiver functions technique along their western line (west line). Their results show
a lithosphere thickening from 130 km below the Indian foreland to 200 km beneath the west Tibet. The litho-
sphere thickness decreases abruptly to ~140 km below the Tarim Basin. However, all Zhao et al. [2010] values
are nearly 100 km thinner than ours. The systematic lower values between the seismic LAB relative and the
thermal LAB have been pointed out by other studies showing the strong dependence of these results on
the observation method [Eaton et al., 2009; Yuan and Romanowicz, 2010; Tunini et al., 2015].

Our results show that the lithospheric mantle from the foreland basin to the Tibetan Plateau is character-
ized by a high positive Vp anomaly (up to 2%, Figure 6f) penetrating down to ~300 km. However, in the
Tarim Basin the positive anomaly reaches just 200 km depth, with negative values below 260 km. This P
wave anomaly distribution is in agreement with the work by Huang and Zhao [2006]. At 200 km depth,
the calculated Vs (Figure 7c) shows higher values beneath the Tibetan Plateau than below the Tarim
Basin, a feature also imaged by Li et al. [2008] and Feng and An [2010]. The seismically fast lithospheric
mantle in the southern half of the profile can be interpreted as the northward subduction of the Indian
plate, as pointed out from published tomography studies [e.g., Tilmann et al., 2003; Wittlinger et al., 2004;
Li et al., 2008]. Similarly, the step-like topography of the LAB, with a sharp jump of ~70 km below the
Karakax Fault, is interpreted as the northern boundary of the Indian plate, as suggested by Zhao
et al. [2010].
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The NE thickening of the Tarim lithosphere toward the Tian Shan (Figure 6f) is in agreement with the P wave
tomography study by Xu et al. [2002]. These authors estimate that the lithosphere of the central and northern
Tarim Basin is thicker (>200 km LAB depth) relative to the southern Tarim Basin and Junggar region
(170–180 km). Teleseismic P wave tomography imaged a ~2% slower lithospheric mantle beneath the Tian
Shan relative to the Tarim Basin [Lei and Zhao, 2007]. Similar results have also been found for P and S wave
velocities [Lei, 2011]. Furthermore, our low Vs values (4.2–4.4 km/s) in the Tian Shan are consistent with values
derived by Vinnik et al. [2004] using receiver function tomography in the western Tian Shan. From Figures 6f
and 6g, we can interpret that the seismically faster Tarim lithospheric mantle is plunging below the slower
Tian Shan mantle, a feature also observed by Poupinet et al. [2002] from P wave tomography and by Zhao
et al. [2003] from magnetotelluric surveys.

Seismic tomography (Figure 6g) shows that the Junggar Basin is characterized by average Vp values in the
lithosphericmantle lower than below the Tian Shan andAltai Range.Wemodeled this velocity change as com-
positional origin, which could be related to either refertilization acting in the subcontinental lithosphericman-
tle, due to the circulation of melts (Lherz Massif) [e.g., Le Roux et al., 2007] or metasomatic events as frequently
reported for mantle xenoliths sampled in cratonic areas [e.g., Pearson et al., 1995; Griffin et al., 2000; Bell et al.,
2005]. Alternatively, low Vp values could be explained by thermal processes related to upwelling of hot
material, as suggested for the central and western Tian Shan by different seismic studies [Vinnik et al., 2004;

Figure 8. Score of all models performed in the western Profile A-B, from Model 0 to Model 4, (in supporting information) and the best fit model (Figure 6). (a) Root-
mean-square errors (RMSEs) for gravity anomaly, geoid height, and topography. (b) Deviations along the profile of gravity anomaly, geoid height, and topography.
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Kumar et al., 2005; Lei and Zhao, 2007; Lei, 2011]. In this case, however, fitting the observables would require
unrealistic high crustal densities.

Below the CAOB region there is a noticeable discrepancy between our thermal LAB and the LAB depth
inferred by Zhao et al. [2003] using the magnetotelluric sounding. These authors claim for a lithospheric
thickness of ~130 km below the Junggar Basin and ~160 km beneath the Tian Shan and Altai Range, provid-
ing evidences for the presence of conductive layers in the crust and upper mantle of the Tian Shan, and a
high resistive Tarim plate subducting into the upper mantle below. The resulting lithosphere thickness from
our best fit model is ~100 km thicker below the ranges (Tian Shan and Altai) and ~120 km thicker below the
Junggar Basin. These discrepancies are related to the different methodologies used to image the lithosphere-
asthenosphere boundary, but the relative thickness variations are similar.

A negative Vp anomaly (~�1%) can be interpreted as caused by either a positive thermal anomaly or by a
change in composition. In our model, we consider that the seismically slow sublithospheric mantle beneath
the Tarim Basin has a thermal origin (ΔT= 60°C), which becomes in a density variation of ~�10 kg/m3. The
origin of this thermal anomaly would be related to sublithospheric mantle flow. Alternatively, a chemical
origin of such P wave tomography anomaly would require a composition similar to the lithospheric mantle
beneath the Junggar region (Mantle 4), which would result in a Vp anomaly of ~�1% and a density anomaly
of ~�6 kg/m3 under the condition of thermal equilibrium (ΔT=0°C). The origin of such compositional
anomaly could be related to some mantle detachment occurred long time ago to reach the thermal
equilibrium with the surrounding sublithospheric mantle but keeping the original composition at those
depths. Although not conclusively, we prefer the thermal interpretation since chemical anomalies convey
density anomalies and sublithospheric mantle flow, which in turn modifies the thermal regime. It is worth
noting, however, that the fit of the geophysical observables and the resulting lithospheric geometry is not
modified significantly.

Four lithospheric mantle domains have been defined according to their different chemical compositions,
seismic velocities, and thicknesses (Figure 6): (1) the subducting Indian lithospheric mantle (Mantle 1)
underlying the Himalayan orogen, Tibetan Plateau, and Kunlun Shan reaching lithospheric mantle thick-
nesses of ~210 km and separated from the Eurasian lithospheric mantle by a jump in both LAB and Moho
discontinuities, coinciding with the Karakax fault; (2) the Tarim (Eurasian) lithospheric mantle domain
(Mantle 1) plunging northward below the Tian Shan, with its deepest portion (Mantle 2) fertilized, with a
thickness of about 180 km and underlined by a thermal sublithospheric anomaly (below 300 km depth); (3)
the Junggar mantle (Mantle 4) characterized by low velocity and ~195 km thick; and (4) the northern
lithospheric mantle domain beneath the Altai Range.

6.2. India-Eurasia Collision Along the Eastern Profile

Numerous studies [Kumar et al., 2006; Jiménez-Munt and Platt, 2006; Jiménez-Munt et al., 2008; Zhao et al.,
2010; Ceylan et al., 2012; Guillot and Replumaz, 2013] suggest the occurrence of a lithospheric mantle thinning
beneath the northeastern Tibetan Plateau, with the LAB located at 100–170 km beneath the north Lhasa and
Qiangtang terrains. This thinning would explain the low P, Pn, and S, Sn wave velocity anomalies and the low
Rayleigh wave phase velocities observed in the region, which combined with the high electrical conductiv-
ities suggest a hot environment throughout the crust and upper mantle [Yue et al., 2012, and references
therein]. The 2-D lithospheric thermal and density models, presented by Jiménez-Munt et al. [2008], along
the C-D transect (Figure 1 for location) agree with this hypothesis, proving the need of a thin and hot litho-
sphere to explain the high topography, gravity, geoid, and crustal temperatures of the northeastern plateau.
The seismic tomography model (Figure 9g) obtained using the method described in section 4.3 images
strong positive anomalies (up to 4%) from the Himalayan foreland basin northward, till the Indus-Yarlung
Suture. North of the suture, a slightly positive (~0.2–0.4%) Vp anomaly is imaged between 100 and 250 km
depth below the Lhasa terrain, whereas a slightly negative (~�0.4%) anomaly is imaged between 150 and
250 km depth below the Qiangtang and Songpan-Ganzi terrains and between 250 km and 400 km depth
below the Qaidam Basin. This low-velocity anomaly has been largely interpreted as due to localized upwel-
ling of asthenospheric material above the subducting slab [DeCelles et al., 2002; Tilmann et al., 2003; Ren
and Shen, 2008; Liang et al., 2011, 2012]. However, the location and spatial extent of this upwelling zone
remains controversial. DeCelles et al. [2002] and Ceylan et al. [2012] locate the low velocity zone north of
the Bangong Nujiang Suture, but the recent receiver function study by Shi et al. [2015] places the mantle
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Figure 9. C-D profile, best fit model. (a) Surface heat flow, (b) Bouguer gravity anomaly, (c) geoid height, and (d) topography. Blue lines represent the calculated
values from the model. Red dots represent denote the data measured data, and vertical dispersion bars denote the standard deviation calculated on a strip of
50 km width (500 km for surface heat flow). (e) Temperature distribution, numbers (1, 5) and PUM indicate the chemical composition (Table 1). Thick horizontal bars
are temperatures taken from [A] Priestley and McKenzie [2006], [B] An and Shi [2007], [C] Galvé et al. [2006], [D] Mechie et al. [2004], and [E] Hacker et al. [2000]. (f) P
waves velocity anomalies relative to the column located at 1800 km distance along the profile (see details on the text). (g) P wave seismic tomography model
(described in section 4.3). BNS = Bangong Nujiang Suture; IYS = Indus- Yarlung Suture; JS = Jinsha Suture; KS = Kunlun Suture; MFT =Main Frontal Thrust; and
NBT = North Border Thrust.
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wedge south of the BNS and then below southern Lhasa (south of 31°N). The Qaidam Basin and the North
China block are characterized by a seismically fast upper mantle (up to 1% Vp anomaly), especially in the first
200 km depth.

Wehave remodeled thisprofile using the sameapproachused forA-B transect to investigate the relative impor-
tance of themantle chemical composition on the density and seismic velocities and therefore on the resulting
lithospheric structure (Figure 9). In the next paragraphswe present our results along the C-D profile, and in the
next section we discuss the differences between the western and eastern sectors of the Tibetan Plateau. The
supporting information includes the intermediate models along the C-D profile to reach the best fit model.

The best fit model along the C-D profile (Figure 9) considers the same crustal structure provided by Jiménez-
Munt et al. [2008]. Only small differences in the Moho depth have been incorporated to update the crustal
thickness values used by Jiménez-Munt et al. [2008] with the most recent data [Yue et al., 2012; Zhang et al.,
2011]. As we already discuss in section 4.4, there is one locality in the Eastern Tibet (in Qaidam-Qilian
Block) where mantle xenolith suites have been analyzed [Song et al., 2007]. Unfortunately, they were not
suitable to explain the observables, in particular the lower lithospheric mantle velocity beneath the
Qaidam-Qilian zone relative to the Indian-Himalayan-South Tibetan Plateau. Therefore, as with the western
profile, we had to refer to the PetDB xenolith global database to look for a composition able to reproduce
the mantle seismic velocities. We consider a mantle composition beneath the Qaidam, Qilian, and North
China block slightly more fertile relative to that of the Himalayan-Tibetan Plateau region (Figure 9e).

A fertileMantle5composition (Table1) allows reducingabout8%thePwavevelocity in the lithosphericmantle,
generatingVpanomalies about2%smallerbelowtheQaidamandNorthChinablock thanbelowtheHimalayan
orogenand forelandbasin. However, thehigher content in FeO, CaO, andalsomoderately inAl2O3with respect
to Mantle 1 increases the mean density of the lithospheric mantle. In consequence, we have reduced the LAB
depth by ~50 km to keep the fit with the density-dependent observables (elevation, gravity, and geoid). The
resulting lithospheric model (Figure 9) is therefore characterized by a thick and dense lithospheric mantle
below the Himalayan orogen and southern sector of the Tibetan Plateau (~250 km) and a thinner lithospheric
mantle (140–170 km) below the Qiangtang, Sonpan-Ganze, Qaidam, Qilian, and North China regions.

This model confirms the results obtained by the thermal modeling by Jiménez-Munt et al. [2008], though the
LAB topography is slightly different. The newly modeled Indian lithospheric mantle is up to 100 km thicker
beneath the Himalayan orogen and ~40 km beneath the Qiangtang terrain. A lithospheric root is shown
below the Qaidam Basin, with the LAB located at ~160 km depth (~20 km less than in Jiménez-Munt et al.
[2008]). Farther north, our LAB descends from the Qilian Shan, in contrast to Jiménez-Munt et al. [2008]
who propose a LAB shallowing ~40 km along this section of the profile.

The pronounced lithospheric thinning beneath the eastern Qiantang is consistent with the available geother-
mobarometry data (Figure 9) showing very high temperatures at middle lower crustal levels (800–1050°C at
40–70 km depth) [Galvé et al., 2006; Hacker et al., 2000] and at upper sublithospheric levels (1390–1420°C at
140 km depth) [Priestley and McKenzie, 2006; An and Shi, 2007] as extensively discussed in Jiménez-Munt
et al. [2008]. Note that considering just a chemical anomaly (i.e., no mantle thinning) would reduce the calcu-
lated temperatures by about 200°C at these depths (see previousmodels for the Eastern profile in the support-
ing information). Moreover, in order to keep the fitting with observables the new composition should be such
that reduces the Vp by about 0.5% relative to PUM at about 1200°C but has a similar density than PUMat about
1400°C at depths of 160–180 km. None of the selected and tested mantle compositions from PetDB petrolo-
gical database fit these conditions and othermantle compositionwould pose difficulties in justifying its origin.

Along this eastern profile we can differentiate only three lithospheric mantle domains according to their vari-
able chemical compositions, seismic velocities, and thicknesses (Figure 9): (1) the Indian lithospheric mantle
underlying the eastern Himalayan orogen and the Lhasa terrain up to the Bangong-Nujiang Suture and char-
acterized by Mantle 1 composition and a great thickness exceeding 200 km; (2) the lithospheric mantle
beneath the Qiangtang with Mantle 1 composition and only 70 km thick; and (3) the Eurasian lithospheric
mantle below the Qaidam Basin, Qilian Shan, and North China Block of Mantle 5 composition and thicknesses
of about 120 km and variable LAB topography. This triple partition of the lithospheric mantle along the east-
ern transect follows the results of the receiver function study by Zhao et al. [2010], in which the transitional
lithospheric region is defined as the “crush zone,” sandwiched between the India and the Eurasia plate.
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The recent geophysical-petrological study of central Tibet by Vozar et al. [2014] also shows a lithosphere thin-
ning beneath the Qiangtang terrain but with a more moderate jump in the LAB depth below Lhasa terrane
(60–80 km, with respect to 120 km in our model). Their petrological results are consistent with the presence of
a compositional variation under the Tibetan Plateau, suggesting a fertile garnet-lherzolite lithospheric mantle
below the Qiangtang, and a Fe-rich spinel-harzburgite lithospheric mantle below Lhasa. We tested the
compositions of Vozar et al. [2014] along our profile for the Qiangtang (garnet-lherzolite) and the India
lithospheric mantle (Fe-rich spinel-harzburgite), but the results show that the RMSE between calculated
and observed data is twice than our model (Table 3). The increased amount of Fe in the India lithosphere
results into a strong decrease of the elevation in the southern Tibetan Plateau and further misfits in the geoid
anomaly. A shallower LAB could overcome the difficulties, but it would produce a decrease in the positive
seismic anomaly below the southern Tibetan Plateau, which works against seismic tomography results.

6.3. Lithospheric Structure Variations in the India-Eurasia Collision Zone and
Geodynamic Implications

Our lithospheric models help to refine the deep structure of the India and Eurasia collisional orogen both in
cross section (western and eastern transects) and along its strike. The modeled profiles delineate the present
position of the northern edge of the Indian lithospheric mantle beneath the thrust system of the Himalaya
and Tibetan Plateau and suggest decoupling and strain partitioning between the crust and the lithospheric
mantle. Finally, the integration of the modeled lithospheric profiles with seismic tomographic images allows
interpreting the structure of the Indian lithosphere subducting beneath Eurasia.

The variations of lithospheric mantle compositions determined in this study are consistent with the distribu-
tion of the large-scale tectonic domains made of continental blocks or terrains separated by suture zones
(Figure 1). According to our results, the Indian lithospheric mantle is characterized by a homogenous chemi-
cal composition (Mantle 1) in both western and eastern sides of the Tibetan Plateau (Profiles A-B and C-D,
respectively, Figure 10). On the contrary, the Eurasian lithospheric mantle shows a higher compositional
variability, with different lithospheric mantle domains reflecting the different amalgamated blocks caused
by the closing of different branches of the Tethys Ocean [e.g., Pubellier et al., 2008; Replumaz and
Tapponnier, 2003; van Hinsbergen et al., 2011, 2012] (Figure 10). Our models show that the extent of the thick
Indian lithospheric mantle (Mantle 1) beneath the Himalayan orogen and Tibetan Plateau is of ~630 km to the
north of the Main Frontal Thrust in the western profile (Figure 6) and ~550 km along the eastern profile
(Figure 9). This shorter length of the Indian lithospheric mantle in the eastern profile contrasts with the east-
ward increasing width of the Tibetan Plateau varying from ~600 km to 1100 km. In addition, this shorter
length in the eastern profile makes the northern limit of the well-characterized Indian lithospheric mantle
crossing the Qiangtang tectonic domain slightly oblique to its tectonic shape (Figure 10): to the West, the
Indian plate underthrusts the whole Tibetan Plateau up to the Karakax Fault, whereas to the East, it under-
thrusts only the southern half of the plateau (up to the Bangong-Nujiang Suture, BNS in Figure 10). The

Table 3. The RMSEa Between Measurements and Calculated Data (See Explanations in the Text)

Bouguer anomaly (mGal) Geoid (m) Topography (m)

Profile A-B
Model 0 48.26 3.37 435.4
Model 1 43.96 1.72 454.51
Model 2 48.32 5.49 402.78
Model 3 40.78 3.92 334.70
Model 4 38.80 3.19 316.24
Western best fit model 37.80 2.14 343.88

Profile C-D
Model 0-E 39.32 8.59 335.20
Model 1-E 25.04 3.86 335.42
Eastern best fit model 25.06 3.72 343.03
Model with compositions from Vozar et al. [2014] 33.9 6.17 642.58

a
RMSE ¼ 1

N

XN

i¼1
x ið Þobs � x ið Þcalc
� �2� �1=2

,where xobs and xcalc are the observed and calculated data, respectively, and
N is the number of total points along the profile depending on the horizontal discretization. In this study,N is 249 and 230
for A-B and C-D profile, respectively.
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obtained position of the northern boundary of the Indian lithospheric mantle is in agreement with results
from receiver functions by Zhao et al. [2010] and the analysis of P wave shallow tomography sections by Li
et al. [2008] and Replumaz et al. [2013].

The lithospheric mantle composition corresponding to Mantle 1 is also present beneath both, the Tarim Basin
to the west the Qiangtang and the Songpan-Ganzi domains to the east, although amore fertile Mantle 2 PUM
is needed along the entire lowermost part of the Tarim Basin lithospheric domain (Figures 6 and 10). The
Qilian Shan in the eastern profile and the Tian Shan-Junggar Basin and the Altai Range in the western profile
are underlined by Mantle 5, Mantle 3, and Mantle 4, respectively (Figures 6 and 10). This correspondence
between tectonic domains at crustal levels and mantle diversity at depth strongly indicates the different
origin for these lithospheric terrains constituted by slightly different mantle compositions that collided
progressively from north to south to form the wide India-Eurasia Collision Zone.

Interestingly, our results on the compositional variations show that the thickness of Mantle 1 domain is very
similar in both selected profiles, but it is grading into hot asthenospheric mantle in the eastern profile
(beneath NE Tibet, where the lithospheric mantle is only 90 km thick) and into Mantle 2 PUM (i.e., cold

Figure 10. (a) Along-strike comparison of the resulting crustal and lithospheric mantle structures of the two modeled
profiles, superimposed to the seismic tomography. (b) Resulting mantle compositions and localization of the northern
edge of the Indian mantle lithosphere.
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asthenosphere) in the western profile (beneath Tarim Basin, where the lithospheric mantle is up to 180 km
thick). These variations at depth could be related to different stages of the northward advance of the
Indian plate beneath Eurasia. To the east, the still active Indian subduction could keep alive corner flow
processes maintaining a hot asthenospheric wedge beneath the Tibetan Plateau, which thinned out the
lithospheric mantle. To the west, the absence of presently active subduction of India together with the differ-
ent thicknesses and compositions of Indian and Tarim Basin lithospheric mantle domains indicates a different
geodynamic scenario. The Mantle 2 PUM body beneath the Tarim Basin in the western profile, however,
might be related to either an inherited influence of precollision processes or linked to the India-Eurasia
collision. In the first hypothesis, the fertile composition of Mantle 2 PUM might be inherited from older pro-
cesses that occurred before the India-Eurasia collision (e.g., Late Carboniferous-Permian large igneous activ-
ity) [Chen et al., 2014]. In the second hypothesis, the composition of Mantle 2 PUM could be related to the
cessation of a former corner flow activity through a slab break-off and consequent partial thermal recovery
of the asthenospheric wedge. This slab break-off is estimated to have occurred at the onset of the India
indentation (~45Ma) [Negredo et al., 2007], and the detached slab should be currently located at depths of
~1100 km below the Tibetan Plateau, as shown in published tomography images [Replumaz et al., 2010,
2014]. Following this second interpretation, we can speculate that the lithospheric structures of the eastern
andwestern profiles represent, respectively, the pre-break-off phase and the post break-off phase of the India
subduction beneath Eurasia.

The Indian continental mantle extends ~600 km farther north of the Main Frontal Thrust deepening progres-
sively from ~225 km beneath the foreland to ~300 km close to Karakax Fault and shows a slight thickening
(30–50 km) in both transects. The length of the Indian lithosphere beneath the Himalaya and Tibetan
Plateau is of same order of magnitude than calculated shortening in the crustal domains [e.g., DeCelles
et al., 2002; Replumaz and Tapponnier, 2003; van Hinsbergen et al., 2011, 2012]. In fact, ~600 km of Indian
lithospheric mantle is a minimum calculation of its total length if we consider that the original geometry of
the mantle should have been thinner toward the edge of its continental passive margin. If true, this slight
increase in thickness toward the north could be related to tectonic thickening during collision.

A final piece of information is provided by the combination of our lithospheric models and the seismic tomo-
graphy (Figure 10). As indicated, the western profile shows an abrupt northern termination of the Indian
lithospheric mantle in both, our model and tomography models. In contrast, the eastern profile shows a
low angle and north dipping positive anomaly that can be interpreted as the Indian oceanic slab still attached
to the Indian continental lithosphere. This slab tomographic image is not observed in the western profile
where the Indian oceanic lithosphere has been detached after a break-off event as has been discussed.

7. Conclusions

An integrated geophysical-petrological modeling was performed along a 2-D profile crossing the western
Himalayan orogen and Tibetan Plateau, the Tarim Basin, the Junggar and Tian Shan, and ending at the
southern Altai Range. We compared the results with an updated 2-D lithospheric model crossing the eastern
Himalayan orogen and Tibetan Plateau, to consistently discuss the differences along the strike of the
India-Eurasia collisional system. The presented cross sections are the first lithospheric models in the India-
Eurasia collision zone which combine gravity, geoid, elevation, thermal analysis, mantle petrology, and
mantle seismic velocities.

Along the western transect (Profile A-B) the Indian Moho is progressively deepening from ~40 km depth
beneath the foreland to ~90 km depth below the Kunlun Shan. Crustal roots are modeled in the Tian Shan
and Altai ranges, with the crust-mantle boundary located at ~66 km and ~62 km depth, respectively. The
lithosphere shows a gradual thickening from 230 km below the Himalayan foreland to 260 km below the
Himalayan orogen and 295 km below the Kunlun Shan. Between the Tibetan Plateau and the Tarim Basin
the LAB shows a step-like geometry shallowing ~65 km beneath the Tarim Basin and reaching 230 km depth.
The LAB depth increases to ~260 km beneath the Tian Shan and Junggar Basin and to ~270 km below the
Altai Range. Along-profile compositional variations within the lithospheric mantle are required to fit the
observables. The resulting mantle composition and thickness suggest the presence of four lithospheric man-
tle domains along this transect. (i) The Indian lithospheric mantle, which underlies the Himalayan foreland
basin, the Himalayan orogen, the Tibetan Plateau, and the Kunlun Shan, and it is compatible with a generic

Tectonics 10.1002/2016TC004161

TUNINI ET AL. LITHOSPHERE OF INDIA-EURASIA COLLISION 23



lherzolitic mantle. The India and Eurasia plates are separated by a sharp change in both LAB and Moho
depths, coinciding with the Karakax fault. (ii) The Tarim (Eurasian) lithospheric mantle plunging northward
below the Tian Shan. It is underlined by a sublithospheric thermal anomaly (below 300 km depth), likely
linked to the enrichment in incompatible elements (CaO and Al2O3) of the deepest lithosphere mantle
portion of the Tarim domain. (iii) The Junggar domain characterized by a less dense and seismically slow
lithospheric mantle. (iv) A northern lithospheric mantle domain beneath the Altai Range.

Along the eastern transect (Profile C-D) our results confirm that the Eastern Tibetan Plateau is supported by a
thick lithosphere (~280 km) in the south and a thin lithosphere (~140 km) in the north. In our interpretation,
the Indian lithospheric mantle is underthrusting the Tibetan Plateau up to the Bangong-Nujiang Suture
discontinuity, whereas the lithospheric mantle below the Qaidam Basin, Qilian Shan, and North China
Block belongs to the Eurasian plate. In between, a transitional lithospheric mantle region, characterized by
different thickness, underlies the Qiangtang and partially the north Lhasa terrain. The lithospheric mantle
beneath the Qaidam Basin and Qilian Shan is denser and characterized by higher content in FeO, CaO, and
also moderately in Al2O3.

Both profiles show laterally varying lithospheric mantle structures in terms of lithospheric thickness,
lithospheric mantle density, temperature, and composition. The lithospheric mantle in the western transect
(Profile A-B) is, in average, colder and thicker than in the eastern one (Profile C-D). The resulting compositional
changes in the lithospheric mantle indicate that the Indian plate is chemically more homogeneous than
the Eurasian plate. A generic lherzolitic mantle is compatible with the lithospheric mantle beneath the
Himalayan-Tibetan Plateau, whereas relative enrichments of Fe, Ca, and Al oxides are required beneath the
Eurasian domains northward, which are compatible with metasomatic processes due to melt circulation.
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Introduction:  

This supporting information provides the intermediate stages of the modeling flow described 

in the main text. It helps the reader to understand the step-by-step procedure which leads to 

the Best-Fit-Models.  
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Supplementary Material 

The objective of this Supplementary Material is to show the procedure followed in modeling 

the lithospheric structure. We are showing some of the intermediate modeling steps before 

obtaining the best fit model. We started with a 1D mantle geometry model (i.e. flat-LAB and 

homogeneous composition for the lithospheric mantle), and then we added different model 

complexities (lithospheric thickness variations and mantle compositional heterogeneities) as 

required to fit the observables (gravity, geoid, elevation, surface heat flow, geothermometric 

data and tomography). For each model, we show the calculated surface geophysical 

observables, the temperature distribution and the P-wave seismic anomaly. The Root Mean 

Square Error (RMSE) is calculated for the gravity anomaly, geoid, and elevation of each 

model (values shown in all figures in panels a-d). 

I. Intermediate modeling stages along A-B profile 

Here we present the modeling results along the western profile A-B (Fig. 1) obtained in 

different steps until reaching the final model.  We started with a model where the lithospheric 

thickness is the same all along the profile (Model 0, Section I.1). Section I.2 shows the effect 

of introducing lithospheric mantle thickness variations, while Section I.3 quantifies the 

contribution to the observables of the lateral heterogeneities in the mantle composition. The 

resulting RMSE and deviation of gravity, geoid and topography for each model are shown in 

Figure 8. 

The crustal model used in all the experiments presented below is the one described in Section 

5.1, where each crustal body is defined by its own set of thermo-physical parameters as 

detailed in Table 2. Note that the P-wave seismic anomaly is always calculated relative to a 

column located north of the Tian Shan, at 1910 km distance in the profile. 

I.1 Flat LAB (Model-0) 

Model-0 is characterized by a 250-km-thick lithosphere with homogeneous mantle 

composition. In agreement with the age of the last tectono-thermal event (Artemieva, 2006), 

we consider a neo-Proterozoic lithospheric mantle (Mantle-1, Table1), the modeling results 

are shown in Fig. S1. 

The model matches the general trends of elevation and potential fields, but the misfits are 

locally considerable. The calculated Bouguer anomaly is overestimated in the Tarim Basin 
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showing ~100 mGal of misfit. The calculated geoid height is up to 10 m higher than the 

observed in the northern part of the basin. The Junggar accretionary belt and Altai regions 

call for a higher density to fit the discrepancies of ~100 mGal in the Bouguer anomaly and 

~1000 m in elevation. Additionally, the calculated mantle seismic velocities are too low (Fig. 

S1f) to correctly reproduce the strong positive Vp-anomalies (0.5-4 %) shown by seismic 

tomography (Fig. S1g). 

Misfits show long wavelengths and affect the whole profile thus suggesting lateral variations 

of the lithospheric mantle structure (in thickness and/or composition).  

I.2 Lithospheric mantle thickness variations (Model-1) 

Model-1 (Fig. S2) shows lateral lithosphere thickness variations. From SW to NE, the 

resulting LAB deepens from 220 km below the Himalayan foreland basin to 295 km below 

the Kunlun Shan; shallowing to ~240 km below the Tarim Basin and then deepening again to 

~260 km below the Tian Shan. Further north, the base of the lithosphere progressively 

deepens from ~260 km depth below the Junggar region to ~280 km below the Altai range. 

The results show that topography and gravity anomaly are slightly sensitive to variations of 

the LAB-topography in a model with a very thick crust and lithosphere mantle as along A-B 

profile. Afonso et al. (2008) explain that, while the geoid height is more sensitive to deeper 

density anomalies and to the LAB topography, the gravity anomaly is more sensitive to 

shallow density anomaly distribution, at crustal or subcrustal depths. Model-1 shows small 

discrepancies in the Bouguer anomaly, mainly localized in the northern tip of the profile 

(Junggar accretionary belt and Altai Range), and an almost perfect fit of the geoid height 

(1.72 m misfit).  

Overall, Model-1 shows two unresolved problems: 1) large misfits (up to 1000 m) in the 

modeled topography of the northern half of the profile; and 2) failure in reproducing the Vp-

anomalies of the lithospheric mantle (Figs. S2f and S2g). To overcome these discrepancies, a 

seismically faster lithospheric mantle is required below the Tibet, whereas the mantle below 

the Tarim Basin and the CAOB region must be faster and denser.  

I.3 Heterogeneous mantle composition (Models 2 to 4) 

Model-0 and Model-1 consider a homogenous mantle composition throughout the profile, but 

the results evidence some misfits with the geophysical observables. The A-B transect crosses 
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distinct lithospheric terrains that were accreted at different times to the ancient Eurasian 

margin and subsequently deformed by the Cenozoic collisional events. The India-Eurasia 

collision triggered lithospheric thickening processes, subductions, upwelling of hot 

asthenosphere material, and related mantle processes (Yin and Harrison, 2000; Tapponnier et 

al., 2001; Jiménez-Munt and Platt, 2006; Guillot and Replumaz, 2013; and reference there 

in), which affected the thermal and compositional structure of the lithosphere. Thus, mantle 

compositional heterogeneities are likely expected in the lithosphere of the India-Eurasia 

collision zone.  

Model-2 (Fig. S3) incorporates a fertile mantle composition in the deepest portion of Tarim 

lithosphere, with a content in major oxides (NCFMAS set) equivalent to the primitive mantle 

of the underlying asthenosphere (Mantle 2-PUM, Table 1). Mantle-2 composition is richer in 

Al2O3 and CaO with respect to Mantle-1 resulting in a denser and seismically faster mantle. 

Mantle-2 allows matching reasonably well the flat topography of the Tarim Basin but it fails 

in reproducing the strong positive P-wave anomaly of the lithospheric mantle beneath Tibetan 

Plateau and Tarim Basin (Figs. S3f and S3g). To the north, the Junggar and Altai regions still 

call for a denser lithospheric mantle to fit the topography and gravity anomaly. 

Model-3 (Fig. S4) considers a different lithospheric mantle composition below the Junggar 

and Altai regions. The observables require a mantle composition resulting in a higher density 

in this sector and, at the same time, in slower P-wave velocities relative to the Himalayan-

Tibetan Plateau and Tarim Basin. Three mantle xenoliths and two magmatic dikes localities 

have been analyzed in the study area (Fig. 1; Song et al., 2007; Bagdassarov et al., 2011; 

Zhang and Zou, 2013; Chen et al., 2014). The composition inferred by these xenoliths does 

not satisfy the characteristics of denser and slower P-wave, and then, they do not fit the 

observables. A possible reason is that these xenoliths are not representative of the lithospheric 

mantle because the samples have been re-worked during their emplacement. Therefore, we 

referred to the petrological PetDB database (http://www.earthchem.org/petdb) to look for 

realistic fertile mantle compositions worldwide that could fit our model. Mantle-3 (Table 1) is 

characterized by an enrichment in FeO relative to MgO with respect to Mantle-1 (Mg#=88.16 

relative to Mg#=90.6 of Mantle-1). This compositional change yields an increase of the 

amplitude of the P-wave positive anomaly below the Himalaya range, the Tibetan Plateau and 

the Tarim Basin relative to the CAOB lithospheric mantle and reduces the RMSE of the 

surface observables. However, the resulting P-wave anomalies in the northern part of the 

profile (Junggar and Altair regions) are inverted with respect to the tomography image. 
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Model-4 (Fig. S5) improves the previous modeling results by introducing a different 

lithospheric mantle composition below the Junggar Basin. With respect to the adjacent 

lithospheric mantle portions, Mantle-4 (Table 1) shows an intermediate content in Fe and Al 

and a Ca-enrichment. This allows reducing the mantle seismic velocities without changing 

the density significantly. The misfits in the potential fields are noticeably reduced with 

respect to Model-3 and the distribution of the P-wave anomalies reasonably matches the 

seismic tomography. These compositional changes however, cannot account for the clear 

negative P-wave anomaly (up to -1%) below 250 km depth in the Tarim Basin imaged by 

seismic tomography (i.e. in the asthenospheric domain, Fig. S5g). The absence of large 

differences in the lithospheric thickness combined with the homogeneous chemical 

composition of the asthenosphere results in small lateral velocity variations within the 

asthenosphere (~-0.1 km/s, corresponding to a Vp-anomaly of ~-0.2%).  

In Section 5 of the main text, we show that the negative seismic anomaly below 250 km 

depth in the Tarim Basin can be reproduced by incorporating a temperature anomaly of 60 ºC 

at sublithospheric levels (best fit model, Fig. 6 and 7). 

II. Intermediate modeling stages along C-D profile 

The above described modeling procedure has been applied to the eastern profile C-D (Fig. 1). 

We have considered the same crustal structure provided by Jiménez-Munt et al. (2008), with 

small differences in the Moho depth related to new data supplied by the most recent works 

(Yue et al., 2012; Zhang et al., 2011). 

Model-0-E (Fig. S6) shows the results after considering a flat LAB geometry at 200 km 

depth. The lithospheric mantle composition is the same as that used in the western profile 

(Mantle-1, Table 1). 

The calculated topography (Fig. S6d) is overestimated by ~1000 m in the Himalayan-

Southern Tibetan Plateau and underestimated by 200-600 m in the northern Plateau (from 

BNS and KF discontinuities). The calculated potential fields also show considerable misfits 

(up to 40 mGal in Bouguer anomaly and up to 20 m in geoid height). 

The calculated temperature distribution (Fig. S6e) shows a significant upward deflection of 

the isotherms below the Himalayan front. The southern part of the Tibetan Plateau (Himalaya 

range and Lhasa terrain) is characterized by a hotter lithospheric mantle than in the northern 

part, which is translated into a strong negative (<-1%) Vp-anomaly (Fig. S6f). In contrast, P-
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wave tomography models show a high positive Vp anomaly beneath the Himalayan Front and 

Thrust Belt dipping towards the Lhasa terrane (Fig. S6g) which has been interpreted as the 

subduction of the Indian plate beneath the Tibetan Plateau.  

Model-1-E (Fig. S7) incorporates lateral variations in the LAB topography showing depth 

values of 190 km in the Himalayan foreland, 270 km in the Himalaya range and Lhasa 

terrain, 130 km in the Qiantang, and 210 km in the Qaidam Basin, Qilian Shan and North 

China block. This lithosphere geometry would explain the geoid height and the gravity 

anomaly with a RMSE of only 3.86 m and 25.04 mGal, respectively. This model accounts for 

part of the high Vp anomaly of the Indian underthrusting (Fig. S7f), but fails in reproducing 

the large positive anomaly (up to 4%) beneath the Himalaya and Lhasa terrane imaged by 

tomography models (Fig. S7g). Moreover, the model predicts a too seismically slow mantle 

beneath the Qiangtang terrane (Fig. S7f).  

The final model (See Section 6.2 and Fig. 9) incorporates lateral variations in the lithospheric 

mantle composition to refine the calculated velocity anomalies. 
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Supplementary Material figure captions  

Fig. S1. Model-0, western profile. Modeling results considering a flat LAB at 250 km depth 

with homogeneous lithospheric mantle composition. a) Surface heat flow, b) Bouguer gravity 

anomaly, c) Geoid height, d) Topography. Blue lines represent the calculated values from the 

model. Red dots denote measured data, and vertical bars denote the standard deviation 

calculated on a strip of 50 km width (500 km for surface heat flow). e) Temperature 

distribution, number 1 and PUM indicate the chemical composition (Table 1). f) P-wave 

velocity anomalies relative to the column located at 1910 km distance along the profile (see 

details on the text). g) P-wave seismic tomography model (described in section 4.3). MCT = 

Main Central Thrust; MFT = Main Frontal Thrust; NTST = Northern Tian Shan Thrust; 

STST = Southern Tian Shan Thrust. 

Fig. S2. Model-1, western profile. Modeling results considering LAB topography variations 

and homogeneous lithospheric mantle composition. Legend as in Figure S1.  

Fig. S3. Model-2, western profile. Modeling results considering LAB topography variations 

and two different lithospheric mantle compositions (numbers refer to Table 1). Legend as in 

Figure S1.  

Fig. S4. Model-3, western profile. Modeling results considering LAB topography variations 

and three different lithospheric mantle compositions (numbers refer to Table 1). Legend as in 

Figure S1.  

Fig. S5. Model-4, western profile. Modeling results considering LAB topography variations 

and four different lithospheric mantle compositions (numbers refer to Table 1). Legend as in 

Figure S1.  

Fig. S6. Model-0-E, eastern profile. Modeling results considering a flat LAB at 200 km depth 

with homogeneous lithospheric mantle composition. a) Surface heat flow, b) Bouguer gravity 

anomaly, c) Geoid height, d) Topography. Blue lines represent the calculated values from the 

model. Red dots denote measured data and vertical bars denote the standard deviation 

calculated on a strip of 50 km width (500 km for surface heat flow). e) Temperature 

distribution, number 1 and PUM indicate the chemical composition (Table 1). f) P-wave 

velocity anomalies relative to a column located at 1800 km distance along the profile (see 

details on the text). g) P-wave seismic tomography model (described in section 4.3). BNS = 
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Bangong Nujiang Suture; IYS = Indus-Yarlung Suture; JS = Jinsha Suture; KS = Kunlun 

Suture; MFT = Main Frontal Thrust; NBT = North Border Thrust. 

Fig. S7. Model-1-E, eastern profile. Modeling results considering LAB topography variations 

and homogeneous lithospheric mantle composition. Legend as in Figure S6.  
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